Образование полярных телец. Редукция числа хромосом при созревании

Первый способ деления соматической клетки — митоз. Материнская клетка разделяется на дочерние клетки, которые практически идентичны родительским с точки зрения генетической информации. Наследственная информация и количество хромосом у дочерних клеток такие же, как у родительской.

Образование полярных телец. Редукция числа хромосом при созревании‍ Схема митоза‍

Митоз — это одна из фаз жизненного цикла клетки и механизм нормального роста тканей. Большую часть клеточного цикла занимает интерфаза, в течение которой протекает повседневная клеточная деятельность. Во время интерфазы происходит: 

  • рост, 
  • синтез белка и других органических веществ клетки, 
  • образование новых органелл.

Во время интерфазы идёт активный синтез и накопление необходимых для деления клетки веществ. Интерфаза делится на три подфазы: 

  • G1 — клетка становится больше, синтезируются белки, образуются одномембранные органоиды и рибосомы, готовясь к делению. В человеческой клетке 46 хромосом. Каждая хромосома, состоящая из одной хроматиды, напоминает неполую макаронину — она достаточно гибкая, чаще всего длина намного превышает ширину. Хроматида представляет собой 1 молекулу ДНК. 
  • S — каждая хроматида копируется. Количество хромосом остаётся неизменным — 46, однако теперь каждая хромосома состоит из двух идентичных сестринских хроматид. Они соединяются в области, которая называется центромерой. В сумме в клетке получается 92 хроматиды.  
  • G2 — продолжается рост клетки и синтез белков, нуклеиновых кислот. 

После стадии G2 клетка вступает в следующую фазу деления, а именно — сам митоз. Тут есть четыре подфазы: профаза, метафаза, анафаза, телофаза.

В схемах деления гаплоидный набор хромосом обозначают буквой n, а набор молекул днк (то есть хроматид) —  буквой с. перед буквами указывают число гаплоидных наборов: 1n2с — гаплоидный набор удвоенных хромосом, 2n2с — диплоидный набор одиночных хромосом, 2n4с — диплоидный набор удвоенных хромосом.

‍Пример. В клетках человека гаплоидный набор составляют 23 хромосомы. Значит, запись 2n2с означает 46 хромосом и 46 хроматид, а 2n4с — 46 хромосом и 92 хроматиды. 

Образование полярных телец. Редукция числа хромосом при созревании

Рассмотрим подробнее фазы митоза:

  • Профаза (2n4с) — спирализация хромосом, уменьшение их функциональной активности; репликация практически не идёт; разрушение оболочки ядра; образование веретена деления.
  • Метафаза (2n4с) — прикрепление хромосом к нитям веретена деления; спирализация хромосом достигает максимума; хромосомы утрачивают свою функциональную активность, образуют экваториальную (метафазную) пластинку. 
  • Анафаза (4n4c) — деление центромер; расхождение по нитям веретена сестринских хромосом. Анафаза заканчивается, когда центромеры достигают полюсов клетки.
  • Телофаза (2n2c) — деспирализация хромосом; образование ядерной оболочки; деление цитоплазмы; между дочерними клетками на экваторе образуется перетяжка. В растительных и грибных клетках в этом месте начинает закладываться клеточная стенка. 

Многие клетки вступают в фазу G0 после митоза и находятся в ней всю жизнь до гибели. Обычно это высокоспециализированные клетки, которые не могут совмещать эффективное выполнение своих функций и размножение. Например, в фазе G0 находится большинство нейронов головного мозга. 

Биологическое значение митоза — образование генетически одинаковых дочерних клеток с тем же набором хромосом, что был у материнской клетки. Сохраняется преемственность в ряду клеточных поколений. 

Образование полярных телец. Редукция числа хромосом при созревании‍Как происходит митоз‍

Что такое мейоз

Второй способ деления эукариотической клетки — мейоз. Это процесс деления клетки, во время которого получаются дочерние клетки — гаметы. У мужчин это сперматозоид, а у женщин яйцеклетка. Гаметы получают только половину генетической информации родительской клетки. Число хромосом уменьшается в два раза. 

Образование полярных телец. Редукция числа хромосом при созревании Схема мейоза‍

Затем гаметы могут объединяться, образуя новую клетку, сочетающую генетическую информацию обеих клеток-родителей — зиготу. Процесс слияния половых клеток называется оплодотворением. Если зигота совершит цепь митозов, сформируется новый организм. 

По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса, по промокоду BIO10112021 бесплатный доступ к курсу биологии 10 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!

Каждая гамета человека содержит 23 хромосомы — гаплоидный набор (n). Когда гаметы объединяются, получается зигота с 46 хромосомами — диплоидный набор (2n). 

Во время мейоза одна клетка с 46 хромосомами делится дважды. Первое деление называется мейоз I, второе деление называется мейоз II. Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна, и в ней не происходит удвоение ДНК. В результате образуются четыре дочерние клетки, каждая с 23 хромосомами. 

Мейоз I подразделяется на четыре фазы, аналогичные фазам митоза:

  • Профаза I (2n4c) — занимает 90% времени. Происходит скручивание молекул ДНК и образование хромосом. Каждая хромосома состоит из двух гомологичных хроматид — 2n4c. Происходит конъюгация хромосом: гомологичные (парные) хромосомы сближаются и скручиваются, образуя структуры из двух соединённых хромосом — такие структуры называют тетрады, или биваленты. Затем гомологичные хромосомы начинают расходиться. При этом происходит кроссинговер — обмен участками между гомологичными хромосомами. В результате этого процесса создаются новые комбинации генов в потомстве. Растворяется ядерная оболочка. Разрушаются ядрышки. Формируется веретено деления.
  • Метафаза I (2n4c) — биваленты выстраиваются на экваторе веретена деления, при этом ориентация центромер к полюсам абсолютно случайная.
  • Анафаза I (хромосомный набор к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c) — гомологичные хромосомы отходят к разным полюсам, при этом сестринские хроматиды всё ещё соединены центромерой. За счёт случайной ориентации центромер распределение хромосом к полюсам также случайно, так как нити веретена прикрепляются произвольно. 
  • Телофаза I (1n2c) — происходит деспирализация хромосом. Если интерфаза между делениями длительна, может образоваться новая ядерная оболочка.

Образование полярных телец. Редукция числа хромосом при созреванииМейоз I‍

Мейоз II подразделяется на четыре такие же фазы: 

  • Профаза II (1n2c) — восстанавливается новое веретено деления, ядерная мембрана растворяется, если образовывалась в телофазе I.
  • Метафаза II (1n2c) — хромосомы выстраиваются в экваториальной части веретена, а нити веретена прикрепляются к центромерам.
  • Анафаза II (хромосомный набор у каждого полюса — 1n1c, в клетке — 2n2c) — центромеры расщепляются, двухроматидные хромосомы разделяются, и теперь к каждому полюсу движется однохроматидная хромосома. 
  • Телофаза II (1n1c) — происходит деспирализация хромосом, формирование ядерных оболочек и разделение цитоплазмы; в результате двух делений из диплоидной материнской клетки получается четыре гаплоидных дочерних клетки. 

Образование полярных телец. Редукция числа хромосом при созреванииМейоз II‍

Биологическое значение мейоза — образование гаплоидных клеток, отличающихся генетически друг от друга: половых клеток (гамет) у животных  и спор у растений. 

Отличие митоза от мейоза

Образование полярных телец. Редукция числа хромосом при созревании

  1. В митозе одно деление, в мейозе два. 
  2. Митоз — вид клеточного деления, который происходит в процессе роста и развития организма, а мейоз — в процессе образования половых клеток. 
  3. При митозе образуются две диплоидные клетки, а при мейозе — четыре гаплоидные клетки. 
  4. Митоз лежит в основе бесполого размножения в отличие от мейоза.
  5. В результате митоза образуются генетически идентичные клетки, а в мейозе вследствие случайного расхождения хромосом и кроссинговера дочерние клетки генетически отличаются друг от друга. 

Оогенез, сперматогенез, оплодотворение

Созревание ооцитов начинается еще до рождения ребенка. Первичные половые клетки, мигрировав в гонаду женщины, путем дифференциации превращаются в оогонии.

  • Оогенез
  • Сперматогенез
  • Оплодотворение
  • Дробление
  • Двухслойный зародышевый диск

Оогенез

Оогонии совершают многочисленные митозы и в конце третьего месяца эмбрионального развития формируют кластеры, окруженные одним слоем плоских эпителиальных клеток (фолликулярных клеток, происходящих из поверхностного эпителия яичника) и образуют примордиальные фолликулы.

Оогонии продолжают митотическое деление, а некоторые из них подлежат большей дифференциации и образуют первичные ооциты.

Сразу после образования первичные ооциты реплицируют свою ДНК и вступают в профазу первого мейотического деления.

В течение следующих месяцев количество оогоний быстро растет, и к пятому месяцу развития общее количество половых клеток в яичнике достигает максимума — около 7 млн.

В это время начинается массовая гибель клеток и многочисленные оогонии, как и первичные ооциты, испытывают атрезии. К седьмому месяцу эмбрионального развития большинство оогоний дегенерирует, за исключением небольшого их количества вблизи поверхности яичника. Все первичные ооциты окружены одним слоем плоских эпителиальных клеток и формируют примордиальные фолликулы.

Перед рождением ребенка все первичные ооциты уже вступили в профазу мейоза, но вместо перехода к метафазе они вступают в стадию диплотена (специфическую стадию покоя во время профазы), которая характеризуется образованием кружевной сетки хроматина.

Первичные ооциты остаются в профазе и не завершают первого мейотического деления вплоть до достижения пубертатного периода (периода полового созревания).

Это, возможно, происходит под действием ингибитора созревания ооцита, который образуется фолликулярными клетками.

Считают, что общее количество первичных ооцитов при рождении девочки колеблется от 700 000 до 2 млн.

Течение последующих лет жизни большинство ооцитов подвергается атрезии, и только около 400 000 клеток остаются до начала пубертатного периода, из которых менее 500 подвергаются овуляции в репродуктивном периоде.

Важным является тот факт, что некоторые ооциты, которые достигают зрелости позже, находятся в состоянии покоя (в диплотенний фазе первого мейотического деления) в течение 40 и более лет.

До сих пор неизвестно, есть ли диплотеновая стадия наиболее благоприятной для защиты ооцита от агрессивных факторов внешней среды, которые действуют на яичник на протяжении всей жизни женщины. Доказано, что риск рождения детей с хромосомными аномалиями увеличивается с возрастом матери: старения первичных ооцитов делает их уязвимыми к повреждениям.

При достижении половой зрелости каждый очередной овариальный цикл начинается со вступления в фазу созревания 5-15 примордиальных фолликулов.

Первичный ооцит, который находится в стадии диплотена, начинает расти, а окружающие его фолликулярные клетки превращаются из плоских в кубические, пролиферируют и образуют многослойный эпителий зернистой зоны (гранулезы), таким образом образуется первичный фолликул.

Клетки гранулезы отделены базальной мембраной от окружающих стромальных клеток, которые образуют внешнюю оболочку, крышу — папку фолликула.

Клетки гранулезы и ооцит секретируют гликопротеины, которые образуют на поверхности ооцита прозрачную зону.

В течение роста фолликула клетки наружной оболочки разделяются на два слоя: внутренний слой секреторных клеток — внутреннюю папку и внешний слой соединительной ткани, содержащей фибробластоподобные клетки — внешнюю папку.

Читайте также:  Куда пойти с ребенком в праздники

Фолликулярные клетки образуют маленькие пальцеобразные отростки, проходящие через прозрачную зону и могут играть важную роль в транспортировке веществ из фолликулярных клеток к ооциту.

В течение оогенеза между клетками гранулезы появляются заполненные жидкостью пространства, при слиянии которых образуется пещера (антрум), и фолликул становится вторичным. Сначала пещера имеет форму полумесяца, но затем увеличивается.

Клетки гранулезы, локализующиеся вокруг ооцита, формируют яйценосный бугорок. Зрелый фолликул, который имеет диаметр> 10 мм, называется третичным или пузырчатым, граафовым фолликулом.

Третичный фолликул окружен внутренней папкой, которая образована стероидсекретирующими клетками и богатая кровеносные сосуды, и внешней папкой, которая постепенно переходит в строму яичника.

В каждом яичниковом цикле в стадию роста вступают несколько фолликулов, но обычно лишь один из них достигает полной зрелости, тогда как остальные подлежат дегенерации (атрезии).

После достижения зрелости фолликула первичный ооцит в нем восстанавливает первое митотическое деление (мейоз I), что приводит к образованию двух неодинаковых по размерам дочерних клеток, каждая из которых имеет 23 двохроматидные хромосомы.

Одна из этих клеток, вторичный ооцит, получает большую часть цитоплазмы, а вторая, первое полярное тельце, цитоплазмы почти не имеет. Первое полярное тельце локализуется между прозрачной зоной и клеточной оболочкой вторичного ооцита в перивителиновом пространстве. Первое мейотическое разделение восстанавливается непосредственно перед овуляцией.

После завершения первого мейотического деления вторичный ооцит, не возвращаясь в стадию покоя и не реплицируя ДНК, вступает во второе мейотическое деление (мейоз II).

Во время образования во вторичном ооците митотического веретена и метафазной хромосомной пластинки происходит овуляция.

Под давлением накопившейся фолликулярной жидкости истонченный участок стенки граафового фолликула разрывается, и ооцит выталкивается из яичника в просвет маточной трубы.

Второй раздел созревания завершается только в случае оплодотворения ооцита. Если оплодотворение не происходит, ооцит погибает (дегенерирует) через 24 ч после овуляции. Неизвестно, осуществляет первое полярное тельце второй раздел, хотя описаны случаи наблюдения оплодотворенной яйцеклетки в сопровождении трех полярных телец.

Сперматогенез

Созревание сперматозоидов (сперматогенез), в отличие от ооцитов, начинается только в пубертатном периоде и включает процессы преобразования сперматогония в сперматозоиды.

При рождении мальчика половые клетки находятся в половых шнурах яичек (маленькие светлые клетки, окруженные поддерживающими клетками Сертоли).

Поддерживающие клетки Сертоли происходят из клеток поверхностного эпителия яичка, подобно фолликулярных клеток яичника.

Вскоре перед половым созреванием в половых шнурах возникает просвет, и они превращаются в семенные канальцы. В настоящее время первичные половые клетки дают начало сперматогонии, среди которых есть 2 типа: сперматогоний типа А и сперматогоний типа Б. Сперматогонии типа А подразделяются митозом и обеспечивают резерв стволовых клеток, сперматогонии типа Б дают начало первичным сперматоцитам.

При нормальных условиях некоторые клетки типа А выходят из популяции стволовых клеток, чтобы начать дальнейшие генерации сперматогония, каждая из которых является более дифференцированной по сравнению с предыдущей генерацией.

После завершения последнего деления клеток типа А формируются сперматогоний типа Б, который после серии митозов превращаются в первичные сперматоциты.

Первичные сперматоциты вступают в продолженную профазу (22 дня), после которого наступает быстрое завершение мейоза І с образованием вторичных сперматоцитов.

Вторичные сперматоциты сразу начинают второе мейотическое разделение, в результате чего образуются гаплоидные сперматиды.

В течение этих процессов, начиная с момента, когда клетки типа А оставляют популяцию стволовых клеток, и к образованию сперматида, цитокинез не заканчивается, и клетки последовательных генераций остаются связанными цитоплазматическими мостиками.

Итак, потомки одного сперматогонического типа А формируют кластер половых клеток, сохраняющих контакт между собой на протяжении всей дифференциации.

Кроме того, сперматогоний и сперматиды протяжении своего развития погружены в глубокие карманы из клеток Сертоли. Клетки Сертоли обеспечивают поддержку для созревающих половых клеток, их защиту и питание, создают условия для высвобождения зрелых сперматозоидов.

Спермиогенез — ряд изменений, в результате которых сперматиды превращаются в сперматозоиды. У человека процесс преобразования сперматогоний в зрелый сперматозоид продолжается 64 суток. Спермиогенез включает следующие фазы:

  • 1) формирование акросомы, покрывающей половину поверхности ядра и содержащей энзимы, помогающие пенетрации в яйцеклетку через ее микроокружение во время оплодотворения;
  • 2) конденсацию ядра;
  • 3) формирование шейки, средней части и хвоста;
  • 4) отторжение большей части цитоплазмы.

Сформированные сперматозоиды направляются в просвет семенных канальцев. С семенных канальцев путем сокращения элементов их стенки сперматозоиды продвигаются в канальцы придатка яичка. Сначала сперматозоиды малоподвижны и приобретают активную подвижность в придатке яичка.

Клинические корреляции. Аномальные гаметы. У человека, как и у большинства млекопитающих, один фолликул яичника иногда может содержать 2 или 3 первичных ооцита.

Такие ооциты могут дать начало двойни или тройни, но обычно они дегенерируют, не достигнув стадии зрелости. В редких случаях один ооцит может содержать два или три ядра.

Такие многоядерные ооциты также погибают, не достигнув зрелости.

В отличие от ооцитов, аномалии сперматозоидов встречаются часто (около 10% сперматозоидов имеют дефекты). Головка, хвост, сперматозоиды могут быть маленькими, гигантскими или соединенными. Сперматозоиды с отклонениями в морфологии не имеют нормальной подвижности и обычно не способны к оплодотворению ооцитов.

Оплодотворение

Оплодотворение — это процесс слияния мужской и женской гамет. Оплодотворение происходит в ампулярной части маточной трубы.

Ооцит, который выталкивается из фолликула вместе с окружающими его клетками гранулезы участка яйценосного бугорка, попадает в ампулу маточной трубы.

Некоторые клетки яйценосного бугорка после этого переориентируются вокруг прозрачной зоны и образуют лучистый венец, или корону.

В момент выброса ооцита, окруженного клетками яйценосного бугорка, из яичника (овуляция) завершается первое мейотическое разделение и вторичный ооцит начинает второе мейотическое разделение.

Сперматозоиды сохраняют способность к оплодотворению в женских половых путях в течение нескольких суток.

Они быстро проникают из влагалища в шейку матки, матку и маточные трубы, что обусловлено двигательной активностью хвостов сперматозоидов в шеечной слизи и сокращениями мускулатуры матки и маточной трубы.

Для сперматозоидов, которые оказываются в маточной трубе, перешеек служит резервуаром, а движение с этого участка в ампулы является синхронизированным процессом.

Сперматозоиды, которые только попали в женские половые пути, не способны к оплодотворению ооцита. Для приобретения способности к оплодотворению им нужно осуществить капацитацию и акросомную реакцию.

Капацитация — это химическая модификация (кондиционирование) поверхности сперматозоидов и семенной жидкости в женских половых путях. У человека этот процесс длится около 7 часов.

Суть капацитации, которая происходит в маточной трубе, состоит во взаимодействии между сперматозоидом и поверхностью слизистой оболочки маточной трубы. При этом гликопротеиновые покрытия и белки семенной жидкости удаляются из плазматической мембраны акросомного участка сперматозоида.

Только капацитованнные сперматозоиды могут пройти сквозь лучистый венец ооцита и осуществить акросомную реакцию.

Акросомная реакция происходит после связывания сперматозоида с прозрачной зоной и обусловлена ​​белками последней. Суть акросомной реакции заключается в высвобождении энзимов, необходимых для пенетрации прозрачной зоны — акрозина и трипсиноподобных веществ.

  1. Оплодотворение состоит из трех фаз, или стадий:
  2. 1) пенетрация лучистого венца;
  3. 2) пенетрация прозрачной зоны;
  4. 3) слияние мембран ооцита и сперматозоида.

Образование полярных телец. Редукция числа хромосом при созревании

В стадии 1 из 200-300 млн сперматозоидов, которые попадают в женские половые пути при семяизвержении, только 300-500 достигают места оплодотворения и только один из них оплодотворяет яйцеклетку; другие сперматозоиды, возможно, помогают ему проникнуть сквозь барьеры, окружающие ооцит. Капацитованные сперматозоиды легко проникают через клетки лучистого венца.

В стадии 2 прозрачная зона— гликопротеиновая оболочка, окружающая ооцит, обеспечивает связывание сперматозоидов и индуцирует акросомную реакцию.

Связывание сперматозоидов с прозрачной зоной индуцируется лигандом 2Р3, белком прозрачной зоны и рецепторами сперматозоида.

Высвобождение акросомных энзимов (акрозина) позволяет сперматозоиду проникнуть сквозь прозрачную зону и вступить в контакт с плазматической мембраной ооцита.

После взаимодействия головки сперматозоида с поверхностью ооцита проницаемость прозрачной зоны меняется. Результатом этого взаимодействия является секреция лизосомных ферментов кортикальных гранул, содержащихся под плазмолеммой ооцита.

Эти ферменты вызывают изменение свойств прозрачной зоны, что предотвращает пенетрации других сперматозоидов и инактивирует видоспецифические сайты рецепторов сперматозоидов на поверхности прозрачной зоны.

В прозрачную зону могут углубляться много сперматозоидов, но лишь один из них проникает в ооцит.

В стадии 3 первичная адгезия сперматозоида с ооцитом частично опосредуется взаимодействием интегринов поверхности ооцита и их лигандов на сперматозоиды. Сразу после адгезии происходит слияние цитоплазматических мембран сперматозоида и яйцеклетки.

Поскольку плазматическая мембрана акросомного участка сперматозоида исчезает в результате акросомной реакции, сливаются мембрана ооцита и мембрана задней части головки сперматозоида.

У человека в цитоплазму ооцита входят головка и хвост сперматозоида, тогда как плазмолемма сперматозоида остается фиксированной к поверхности ооцита.

На проникновение сперматозоида ооцит реагирует тремя процессами:

1. Кортикальная реакция и зона-реакция.

В результате выброса из ооцита кортикальных гранул, в которых содержатся лизосомальные ферменты, мембрана ооцита становится непроницаемой для других сперматозоидов и прозрачная зона меняет свою структуру и состав, предотвращая связывание и проникновению других сперматозоидов. Этот механизм предотвращает полиспермию (проникновение в ооцит более чем одного сперматозоида).

2. Обновление второго мейотического деления. Сразу после вхождения сперматозоида ооцит завершает свой ​​второй мейотическое разделение. Одна из дочерних клеток почти не получает цитоплазмы — второе полярное тельце, другая — является дефинитивным ооцитом. Хромосомы дефинитивных ооцита (22 + Х) образуют пузырчатое ядро — женский пронуклеус.

3. Метаболическая активация яйцеклетки. Фактор активации, возможно, вносится сперматозоидом. Активация после слияния ооцита со сперматозоидом включает в себя первичные клеточные и молекулярные процессы, связанные с ранним эмбриогенезом.

Читайте также:  Нефротический синдром. Функция нефронов при хронической почечной недостаточности

После проникновения через оболочки ооцита сперматозоид движется вперед, к достижению тесной близости с женским пронуклеусом. Ядро сперматозоида набухает и образует мужской пронуклеус, тогда как хвост отделяется и дегенерирует.

Морфологически мужской и женский пронуклеусы различить невозможно. Они вступают в тесный контакт, теряют ядерные оболочки и реплицируют свои ДНК. Сразу после синтеза ДНК хромосомы образуют веретено деления и готовятся к митозу.

Материнские (23) и родительские (23) двохроматидные хромосомы расщепляются продольно в области центромеры. Сестринские хроматиды движутся к противоположным полюсам, обеспечивая каждую клетку двухклеточного зародыша нормальным диплоидным количеством хромосом и ДНК.

Когда сестринские хроматиды движутся к противоположным полюсам, на поверхности клетки образуется глубокая борозда, которая со временем разделяет цитоплазму на 2 части.

  • Итак, основные результаты оплодотворения включают следующие процессы:
  • 1) восстановление диплоидного набора хромосом, половина из которых происходит от отца, половина — от матери. Образованная зигота содержит новую комбинацию хромосом, отличается от генотипа родителей;
  • 2) определение пола нового индивида. Сперматозоид, несущий Х-хромосому, обусловливает развитие эмбриона женского пола (ХХ), а сперматозоид, несущий У-хромосому, эмбриона мужского пола (ХУ);

3) начало дробления. Если оплодотворение не происходит, ооцит обычно дегенерирует через 24 ч после овуляции.

Клинические корреляции. Проблема бесплодия затрагивает 15-30% супружеских пар. Мужское бесплодие обусловлено аномалиями количества и качества сперматозоидов. В норме эякулят имеет объем 3-4 мл и содержит 100 млн сперматозоидов. Если количество сперматозоидов

Полярные тельца

Полярные тельца или полоцит — клетки, которые образуются во время созревания яйцеклетки в результате двух последовательных мейотического деления. Полярные тельца в результате неравномерного разделения содержат хромосомы и незначительное количество цитоплазмы, являются неполноценными клетками и, как правило, быстро деградируют.

Первое и второе полярное тельце

В первый мейтоичний разделение вступает предшественник яйцеклетки, ооцит первого порядка или первичный ооцит, содержащий тетрплидний набор хромосом 4n.

В результате первого раздела ооцит первого порядка делится на ооцит второго порядка, который станет затем яйцеклеткой и содержит большую часть цитоплазмы и первом полярное тельце. Поэтому вторичный ооцит и первое полярное тельце содержит диплоидный набор хромосом, 2n.

Первое полярное тельце во многих случаях не вступает во второй мейотическое деление, а дегенерируют через несколько часов после формирования.

Вторичный ооцит вступает во второй мейотическое разделение (у млекопитающих и других видов уже после оплодотворения), в результате которого формируется яйцеклетка, с основной частью цитоплазмы и второе полярное тельце.

Обе клетки содержат гаплоидный набор хромосом, 1n (не считая ядерного материала сперматозоида).

Второе полярное тельце, в отличие от первого, не разрушается и остается в течение первых стадий дробления — митотических делений зиготы.

Мейотическое разделение во время оогенеза (образование яйцеклетки) отличается от мейтоичного разделения сперматогенеза (образования сперматозоида) ли не центральным размещением хромосом во время метафаз 1 и 2.

Вероятно разделения, к которому присоединении хромосомам, что отойдут к полярному тельца, размещается очень близко к клеточной мембране таким образом, что окончание мейоза I приводит к отделению первого полярного тельца.

Медицинское использование полярных телец

Полярные тельца используются для преимплантационной генетической диагностики — способа проанализировать будущие эмбрионы на наличие возможных болезней к имплантации (образование плаценты, а также соединения зародыша с материнским организмом).

Плюсом использования полярного тельца для генетического анализа в отличие от биопсии эмбриона является ранняя стадия проведения анализа и неинвазивность методики — ткани эмбриона не используются при таком анализе.

Однако минусом биопсии полярного тельца является то, что материалы, взятые на анализ с полярного тельца не в полной мере могут быть тождественными материалам зиготы.

Редукция числа хромосом — это… Что такое Редукция числа хромосом?

  • редукция [числа] хромосом — gametic reduction редукция гамет, редукция [числа] хромосом. Уменьшение числа хромосом вполовину против соматического набора; Р.г. составная часть редукционного деления (мейоза). (Источник: «Англо русский толковый словарь генетических терминов».… …   Молекулярная биология и генетика. Толковый словарь.
  • редукция гамет — редукция [числа] хромосом Уменьшение числа хромосом вполовину против соматического набора; Р.г. составная часть редукционного деления (мейоза). [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.]… …   Справочник технического переводчика
  • редукция гамет — редукция гамет. См. редукция [числа] хромосом. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.
  • Редукция — I Редукция (лат. reductio отведение назад, возвращение, восстановление) в биологии уменьшение размеров, упрощение структуры или полная утрата органа, ткани или клетки в ходе исторического развития (филогенеза). II Редукция в цитологии регенерация …   Медицинская энциклопедия
  • РЕДУКЦИЯ — 1. Уменьшение органов или тканей (до их исчезновения) и нередко потеря ими функции в процессе онтогенеза или филогенеза. 2. Уменьшение числа хромосом в клетках в результате мейоза …   Словарь ботанических терминов
  • гаметическая редукция — ЭМБРИОЛОГИЯ ЖИВОТНЫХ ГАМЕТИЧЕСКАЯ РЕДУКЦИЯ – уменьшение числа хромосом вдвое, происходящее во время мейоза, при образовании половых клеток – гамет …   Общая эмбриология: Терминологический словарь
  • Мейоз — (от греч. méiosis уменьшение)         редукционное деление, деления созревания, способ деления клеток, в результате которого происходит уменьшение (редукция) числа хромосом в два раза и одна диплоидная клетка (содержащая два набора хромосом)… …   Большая советская энциклопедия
  • МЕЙОЗ — (от греч. meiosis уменьшение), деления созревания, особый способ деления клеток, в результате к рого происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния в гаплоидное; осн. звено гаметогенеза. М открыт В.… …   Биологический энциклопедический словарь
  • Мейоз — (от греч. meiosis  уменьшение) или редукционное деление клетки  деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с… …   Википедия
  • КЛЕТКА — элементарная единица живого. Клетка отграничена от других клеток или от внешней среды специальной мембраной и имеет ядро или его эквивалент, в котором сосредоточена основная часть химической информации, контролирующей наследственность. Изучением… …   Энциклопедия Кольера

Овогенез

Фазы овогенеза сопоставимы с таковыми при сперматогенезе. В этом процессе также имеется период размножения, когда интенсивно делятся овогонии — мелкие клетки с относительно крупным ядром и небольшим количеством цитоплазмы. У млекопитающих и человека этот период заканчивается еще до рождения.

Сформировавшиеся к этому времени овоциты первого порядка сохраняются далее без изменений многие годы. С наступлением половой зрелости периодически отдельные овоциты вступают в период роста. Овоциты увеличиваются, в них накапливаются желток, жир, пигменты. В цитоплазме клетки в ее органоидах и мембранах происходят сложные морфологические биохимические преобразования.

Каждый овоцит окружается мелкими фолликулярными клетками, обеспечивающими его питание.

Далее наступает период созревания, в процессе которого происходят два последовательных деления, связанных с преобразованием хромосомного аппарата (мейоз).

Кроме того, эти деления сопровождаются неравномерным разделением цитоплазмы между дочерними клетками.

При делении овоцита первого порядка образуется одна крупная клетка — овоцит второго порядка, содержащая почти всю цитоплазму, и маленькая клетка, получившая название полярного, или редукционного тельца.

При втором делении созревания цитоплазма снова распределяется неравномерно. Образуется одна крупная овотида и второе редукционное тельце. В это время первое редукционное тельце также может разделиться на две клетки. Таким образом, из одного овоцита первого порядка образуются одна овотида и три редукционных тельца.

Далее из овотиды формируется яйцо, а редукционные тельца рассасываются или сохраняются на поверхности яйца, но не принимают участия в дальнейшем развитии. Неравномерное распределение цитоплазмы обеспечивает яйцу получение значительного количества цитоплазмы и питательных веществ, которые потребуются в будущем для развития зародыша.

У млекопитающих и человека периоды размножения и роста яйцевых клеток проходят в фолликулах. Фолликул заполнен жидкостью, внутри него находится яйцеклетка. Во время овуляции стенка фолликула лопается, яйцеклетка попадает в брюшную полость, а затем, как правило, в яйцеводы (маточные трубы). Период созревания яйцевых клеток протекает в трубах, здесь же происходит оплодотворение.

У многих животных овогенез и созревание яиц совершаются лишь в определенные сезоны года. У женщин обычно ежемесячно созревает одно яйцо, а за весь период половой зрелости около 400 яиц.

Мейоз

В ядрах незрелых половых клеток также, как и ядрах соматических клеток, все хромосомы парные, набор хромосом двойной (2 n), диплоидный.

В процессе созревания половых клеток происходит редукционное деление (мейоз), при котором число хромосом уменьшается, становится одинарным (n), гаплоидным. Мейоз (от греч. meiosis — уменьшение) происходит во время гаметогенеза.

Этот процесс совершается во время двух следующих одно за другим делений периода созревания, называемых соответственно первым и вторым мейотическим делением. Каждое из этих делений имеет фазы, аналогичные митозу.

  • Схематично эти фазы можно изобразить так:
  • Интерфаза I
  • Профаза I
  • Мейоз Деление первое Прометофаза I
  • Метафаза I
  • Анафаза I
  • Телофаза I
  • Интерфаза II — ин — Профаза II
  • терокинез Метафаза II
  • Деление второе Анафаза II
  • Телофаза II
  • В интерфазе I (по-видимому, еще в период роста) происходит удвоение количества хромосомного материала путем редупликации молекул ДНК.

Из всех фаз наиболее продолжительна и сложна по протекающим в ней процессам профаза I. В ней различают 5 последовательных стадий. Лептонема — стадия длинных, тонких, слабо спирализованных хромосом, на которых видны утолщения — хромомеры.

Зигонема — стадия попарного соединения гомологичных хромосом, при котором хромомеры одной гомологичной хромосомы точно прикладываются к соответствующим хромомерам другой (это явление называется конъюгацией, или синапсисом). Пахинема — стадия толстых нитей. Гомологичные хромосомы соединены в пары — биваленты.

Читайте также:  Воспитание вежливости у ребенка

Число бивалентов соответствует гаплоидному набору хромосом. На этой стадии каждая из хромосом, входящих в бивалент, состоит уже из двух хроматид, поэтому каждый бивалент включает в себя четыре хроматиды.

В это время конъюгирующие хромосомы переплетаются, что приводит к обмену участками хромосом (происходит так называемый перекрест, или кроссинговер). Диплонема — стадия, когда гомологичные хромосомы начинают отталкиваться друг от друга, но в ряде участков, где происходит кроссинговер, они продолжают быть еще связанными.

Диакинез — стадия, на которой отталкивание гомологичных хромосом продолжается, но они еще остаются соединенными в биваленты своими концами, образуя характерные фигуры — кольца и кресты. На этой стадии хромосомы максимально спирализованы, укорочены и утолщены. Непосредственно после диакинеза ядерная оболочка растворяется.

В прометафазе I спирализация хромосом достигает наибольшей степени. Они перемещаются в области экватора.

В метафазе I биваленты располагаются по экватору, так что центромеры гомологичных хромосом обращены к противоположным полюсам и отталкиваются друг от друга.

В анафазе I начинают расходиться к полюсам не хроматиды, а целые гомологичные хромосомы каждой пары, так как в отличие от митоза центромера не делится и хроматиды не разъединяются. Этим первое мейотическое деление принципиально отличается от митоза. Деление заканчивается телофазой I.

Таким образом, во время первого мейотического деления происходит расхождение гомологичных хромосом. В каждой дочерней клетке уже содержится гаплоидное число хромосом, но содержание ДНК еще равно диплоидному их набору. Вслед за короткой интерфазой, во время которой синтеза ДНК не происходит, клетки вступают во второе мейотическое деление.

Профаза II продолжается недолго. Во время метафазы II хромосомы выстраиваются по экватору, центромеры делятся. В анафазе II сестринские хроматиды направляются к противоположным полюсам. Деление заканчивается телофазой II. После этого деления хроматиды, попавшие в ядра дочерних клеток, называются хромосомами.

Итак, при мейозе гомологичные хромосомы соединяются в пары, затем в конце первого мейотического деления расходятся по одной в дочерние клетки.

Во время вторго мейотического деления гомологичные хромосомы расщепляются и расходятся в новые дочерние клетки.

Следовательно, в результате двух последовательных мейотических делений из одной клетки с диплоидным набором хромосом образуются четыре клетки с гаплоидным набором хромосом. В зрелых гаметах количество ДНК вдвое меньше, чем соматических клетках.

При образовании как мужских, так и женских половых клеток, происходят принципиально одни и те же процессы, хотя в деталях они несколько различаются.

Значение мейотического деления в следующем:

Это тот механизм, которым обеспечивается поддержание постоянства числа хромосом. Если бы не происходило редукции числа хромосом при гаметогенезе, то из поколения в поколение возрастало бы их число и был бы утрачен один из существенных признаков каждого вида — постоянство числа хромосом.

При мейозе образуется большое число различных новых комбинаций негомологичных хромосом. Ведь в диплоидном наборе они двойного происхождения: в каждой гомологичной паре одна из хромосом от отца, другая — от матери. Что же происходит при мейозе? Это можно проследить на рис.2.

Изображенные в ядрах сперматогонии и овогонии хромосомы отцовского происхождения обозначены черным цветом, материнские белым. Как видно на рисунке, в сперматозоидах и яйцеклетках они образуют новые сочетания, причем таких сочетаний даже при том же числе хромосом (три пары) получится больше чем изображено.

Следовательно, благодаря такому механизму достигается большое число новых сочетаний наследственной информации, а именно 2, где n — число пар хромосом. Следовательно, у организма, имеющего три пары хромосом, этих сочетаний окажется 2, т.е.8; у дрозофилы, имеющей 4 пары хромосом, их будет 2, т.е.

16, а у человека — 2, что составляет 8388608.

В процессе кроссинговера также происходит рекомбинация генетического материала.

Практически все хромосомы, попадающие в гаметы, имеют участки, происходящие как от первоначально отцовских, так и от первоначально материнских хромосом. Этим достигается еще большая степень перекомбинации наследственного материала.

В этом одна из причин изменчивости организма, дающий материал для отбора. Слюсарев А.А. Биология с общей генетикой. М.: Медицина, 1978., — 102-105 с

ГАМЕТОГЕНЕЗ. ОПЛОДОТВОРЕНИЕ

У организмов женского пола развитие половых клеток (оогенез) начинается в яичниках на основе первичных диплоидных клеток, называемых оогониями. В семенниках индивидуумов мужского пола процесс образования гамет (сперматогенез) также начинается из исходных диплоидных клеток (сперматогоний).

Первый этап оогенеза и сперматогенеза (размножение) связан с увеличением числа указанных первичных клеток с помощью механизма митотического деления.

На втором этапе происходит рост (увеличение размеров) этих клеток, в результате чего они превращаются в ооциты первого порядка (ооциты I) и сперматоциты первого порядка (сперматоциты I).

Далее следует третий этап гаметогенеза, который заканчивается формированием гамет (этап созревания).

На этапе созревания гамет наблюдаются два последовательных мейотических деления, приводящие к уменьшению (редукции) числа хромосом в каждой дочерней клетке в два раза по сравнению с исходной материнской клеткой, т.е. имеет место гаплоидизация хромосомного набора этих клеток.

В случае оогенеза при этом происходит неравномерное распределение цитоплазмы материнской клетки между двумя дочерними клетками, поэтому после первого деления мейоза возникает крупный ооцит второго порядка (ооцит II) и маленькое первое полярное тельце (клетка с очень небольшим количеством цитоплазмы).

После второго деления мейоза формируется большая по размерам яйцеклетка и маленькое второе полярное тельце.

В дальнейшем происходит дегенерация полярных телец и окончательное созревание яйцеклетки, которая, помимо гаплоидного набора хромосом, содержит также большое количество цитоплазматического материала, необходимого для развития будущего эмбриона.

Что касается сперматогенеза, то при делениях мейоза здесь наблюдается равномерное распределение цитоплазмы между дочерними клетками, приводящее к образованию гаплоидных сперматозоидов с одинаковым и небольшим по размерам содержанием цитоплазматических компонентов.

Рассматривая распределение хромосом гомологичной пары и содержащихся в них генов, следует отметить, что возможны два принципиально разных варианта такого распределения.

Первый (более вероятный) вариант связан с образованием двух типов генетически различающихся гамет с хромосомами, не претерпевшими кроссинго- веров на участках, где локализованы рассматриваемые гены. Такие гаметы принято называть некроссоверными.

При втором (менее вероятном) варианте, наряду с некроссоверными, возникают также кроссоверные гаметы как результат генетического обмена (генетической рекомбинации) в участках гомологичных хромосом, расположенных между локусами двух неаллельных генов.

Изучая распределение хромосом при мейозе в случаях с более значительной их численностью в диплоидном наборе (2п = 4 и более), следует иметь в виду, что количество возможных вариантов некроссоверных гамет будет определяться в соответствии с формулой 2П (цифра 2 означает диплоидность кариотипа, ап — число пар хромосом в этом кариотипе). Так, в случае гипотетического дигетерозигот- ного организма, имеющего две пары гомологичных хромосом (2п = 4), возможно образование четырех вариантов генетически различающихся гамет (каждого с вероятностью 1/4, или 25%). Это связано со случайным (свободным) распределением хромосом из разных пар и соответствует теоретически ожидаемой величине (22 = 4). Для человека (2п = 46) соответствующая величина будет определяться по формуле 223, т.е. может формироваться более 8 млн разных вариантов некроссоверных гамет.

Рассмотренные примеры свидетельствуют о существовании еще одного универсального принципа, согласно которому во время мейо- за наблюдается случайное (свободное, независимое) комбинирование негомологичных хромосом, что является одной из основных причин генетического разнообразия формирующихся гамет.

Таким образом, зрелые гаметы, возникшие в результате двух мейоти- ческих делений, представляют собой генетически уникальные структуры, разнообразие которых обеспечивается случайным комбинированием генов гомологичных хромосом (случайным характером кроссинговеров) и независимым распределением негомологичных хромосом.

При последующем оплодотворении происходит объединение гаплоидных хромосомных наборов сперматозоида и яйцеклетки, приводящее к формированию диплоидного комплекса образующейся зиготы.

Сам процесс оплодотворения также основан на принципе случайного (свободного) комбинировании генетического материала гамет, что является дополнительным фактором в определении генетического разнообразия зигот и развивающихся из них индивидуумов.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

  • 1. Проанализируйте, в чем состоит принципиальное сходство оо- генеза и сперматогенеза и в чем их различие.
  • 2. Определите число аутосом и половых хромосом в соматической и зрелой половой клетке мужчины и женщины (у человека 2п = 46).
  • 3. Установите возможные варианты гамет и их вероятность у организмов со следующими генотипами: АА, Аа, ХАХА, ХАХа, XAY, АаВВ, AaBb, АаХАХа, AaXAY, ААВВЕЕ, АаВВЕе, АаВЬЕе.
  • 4. У человека гены гемофилии (h) и дальтонизма (d) локализованы в Х-хромосоме. Сделайте символическую запись генотипов и возможных вариантов гамет (некроссоверных и кроссоверных) для женщины, являющейся дигетерозиготной по указанным генам, и для гемизиготного мужчины, который имеет доминантные аллели этих генов.
  • 5. Составьте упрощенную схему распределения хромосом (и содержащихся в них генов) во время мейоза для гипотетического организма, имеющего две пары гомологичных хромосом (2п = 4). Каждую пару хромосом маркируйте символами генов (А-а, В-b — для одной пары хромосом и С-с — для другой пары). Изобразите все возможные варианты формирующихся гамет (некроссоверных и кроссоверных).
  • * * *

Фундаментальные представления о цитологических основах наследования генов и контролируемых ими признаков у эукариот сформировались в связи с пониманием генетического смысла процессов митотического и мейотического деления клеток.

Значительный прогресс в развитии современных знаний в этой области обусловлен в первую очередь успехами в изучении молекулярных механизмов указанных процессов и генетической регуляции клеточного цикла.

В результате таких исследований создается научная основа для направленного вмешательства в митотическую (пролиферативную) активность клеток в целях практического решения ряда задач современной медицины (проблем злокачественного роста клеток, регенерации тканей и органов человека и др.).

Ссылка на основную публикацию
Adblock
detector