Обмен белков в печени. роль печени в синтезе и разрушении белков

⇐ ПредыдущаяСтр 3 из 5Следующая ⇒

Печень является органом, регулирующим поступление азотистых веществ в организм и их выведение.

В периферических тканях постоянно протекают реакции биосинтеза с использованием свободных аминокислот, либо выделение их в кровь при распаде тканевых белков. Несмотря на это, уровень белков и свободных аминокислот в плазме крови остаётся постоянным.

Это происходит благодаря тому, что в клетках печени имеется уникальный набор ферментов, катализирующих специфические реакции обмена белков.

31.4.1. Пути использования аминокислот в печени. После приёма белковой пищи в клетки печени по воротной вене поступает большое количество аминокислот. Эти соединения могут претерпевать в печени ряд превращений, прежде чем поступить в общий кровоток. К этим реакциям относятся (рисунок 10):

  • а) использование аминокислот для синтеза белков;
  • б) трансаминирование — путь синтеза заменимых аминокислот; осуществляет также взаимосвязь обмена аминокислот с глюконеогенезом и общим путём катаболизма;
  • в) дезаминирование — образование α-кетокислот и аммиака;
  • г) синтез мочевины — путь обезвреживания аммиака (схему см. в разделе «Обмен белков»);

д) синтез небелковых азотсодержащих веществ (холина, креатина, никотинамида, нуклеотидов и т.д.).

Обмен белков в печени. Роль печени в синтезе и разрушении белков

Рисунок 10. Обмен аминокислот в печени (схема).

31.4.2. Биосинтез белков.

В клетках печени синтезируются многие белки плазмы крови:альбумины (около 12 г в сутки), большинство α- и β-глобулинов, в том числе транспортные белки(ферритин, церулоплазмин, транскортин, ретинолсвязывающий белок и др.). Многие факторы свёртывания крови(фибриноген, протромбин, проконвертин, проакцелерин и др.) также синтезируются в печени.

Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов.

Местами «соединения» обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из ЦТК, способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.

  1. С обменом липидов углеводы связаны еще более тесно:
  2. · образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола,
  3. · глицеральдегидфосфат, также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат,
  4. · глицерол-3-фосфат, образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути,
  5. · «глюкозный» и «аминокислотный» ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.

Обмен белков в печени. Роль печени в синтезе и разрушении белков

Взаимосвязь обмена белков, жиров и углеводов

Углеводный обмен

В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови.

Активный синтез гликогенапроисходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г.

При кратковременном голодании происходит гликогенолиз, в случае длительного голодания основным источником глюкозы крови является глюконеогенезиз аминокислот и глицерина.

Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу.

Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.

Липидный обмен

Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы.

Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП).

Холестерол используется, в первую очередь, для синтеза желчных кислот, также он включается в состав липопротеинов низкой плотности (ЛПНП) и ЛПОНП.

При определенных условиях – голодание, длительная мышечная нагрузка, сахарный диабет I типа, богатая жирами диета – в печени активируется синтез кетоновых тел, используемых большинством тканей как альтернативный источник энергии.

Белковый обмен

Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более.

К ним относятся не только белки собственно гепатоцитов, но и идущие на «экспорт» – альбумины, многие глобулины, ферменты крови, а такжефибриноген и факторы свертывания крови.

Обмен белков в печени. Роль печени в синтезе и разрушении белков

Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов.

Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина.

В печени идет утилизация избыточного азота и включение его в составмочевины.

  • Реакции синтеза мочевины теснейшим образом связаны с циклом трикарбоновых кислот.
  • Обмен белков в печени. Роль печени в синтезе и разрушении белков
  • Тесное взаимодействие синтеза мочевины и ЦТК
  • Пигментный обмен
  • Участие печени в пигментном обмене заключается в превращении гидрофобного билирубина в гидрофильную форму и секреция его в желчь.
  • Пигментный обмен, в свою очередь, играет важную роль в обмене железа в организме – в гепатоцитах находится железосодержащий белок ферритин.

⇐ Предыдущая12345Следующая ⇒

Роль печени в обмене белков

Обмен белков в печени. Роль печени в синтезе и разрушении белков Обмен белков в печени. Роль печени в синтезе и разрушении белков Обмен белков в печени. Роль печени в синтезе и разрушении белков

Печень играет центральную роль в обмене белков. Она выполняет следующие основные функции: синтез специфических белков плазмы; образование мочевины и мочевой кислоты; синтез холина и креатина; трансаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел. Все альбумины плазмы, 75–90% α-глобу-линов и 50% β-глобулинов синтезируются гепатоцитами. Лишь γ-гло-булины продуцируются не гепатоцитами, а системой макрофагов, к которой относятся звездчатые ретикулоэндотелиоциты (клетки Купфера). В основном γ-глобулины образуются в печени. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин.

При заболеваниях печени определение фракционного состава белков плазмы (или сыворотки) крови нередко представляет интерес как в диагностическом, так и в прогностическом плане. Известно, что патологический процесс в гепатоцитах резко снижает их синтетические возможности.

В результате содержание альбумина в плазме крови резко падает, что может привести к снижению онкотического давления плазмы крови, развитию отеков, а затем асцита.

Отмечено, что при циррозах печени, протекающих с явлениями асцита, содержание альбуминов в сыворотке крови на 20% ниже, чем при циррозах без асцита.

Нарушение синтеза ряда белковых факторов системы свертывания крови при тяжелых заболеваниях печени может привести к геморрагическим явлениям.

При поражениях печени нарушается также процесс дезаминирования аминокислот, что способствует увеличению их концентрации в крови и моче.

Так, если в норме содержание азота аминокислот в сыворотке крови составляет примерно 2,9–4,3 ммоль/л, то при тяжелых заболеваниях печени (атрофические процессы) эта величина возрастает до 21 ммоль/л, что приводит к аминоацидурии.

Например, при острой атрофии печени количество тирозина в суточном количестве мочи может достигать 2 г (при норме 0,02–0,05 г/сут).

В организме образование мочевины в основном происходит в печени. Синтез мочевины связан с затратой довольно значительного количества энергии (на образование 1 молекулы мочевины расходуется 3 молекулы АТФ).

При заболевании печени, когда количество АТФ в гепатоцитах уменьшено, синтез мочевины нарушается. Показательно в этих случаях определение в сыворотке отношения азота мочевины к аминоазоту.

Читайте также:  Опухоли при беременности. Лечение опухолей во время беременности. Доброкачественная внутричерепная гипертензия.

В норме это отношение равно 2:1, а при тяжелом поражении печени составляет 1:1.

Большая часть мочевой кислоты также образуется в печени, где много фермента ксантиноксидазы, при участии которого оксипурины (гипо-ксантин и ксантин) превращаются в мочевую кислоту. Нельзя забывать о роли печени и в синтезе креатина. Имеются два источника креатина в организме.

Существует экзогенный креатин, т.е. креатин пищевых продуктов (мясо, печень и др.), и эндогенный креатин, синтезирующийся в тканях. Синтез креатина происходит в основном в печени, откуда он с током крови поступает в мышечную ткань.

Здесь креатин, фосфорилируясь, превращается в креатинфосфат, а из последнего образуется креатинин.

  • Предыдущая страница | Следующая страница
  • СОДЕРЖАНИЕ

Роль печени в обмене аминокислот и белков

  • Печень играет центральную роль в обмене белков и других азотсодержащих соединений. Она выполняет следующие функции:
  • · синтез специфических белков плазмы: — в печени синтезируется: 100 % альбуминов, 75 – 90 % α-глобулинов, 50 % β-глобулинов,
  • единственный орган, где синтезируются белки свертывающей системы крови – протромбин, фибриноген, проконвертин, проакцелерин;
  • · активно протекают реакции трансаминирования и дезаминирования аминокислот;
  • · биосинтез мочевины происходит исключительно в печени;
  • · образование мочевой кислоты происходит в основном в печени, так как здесь много фермента ксантиноксидазы, при участии которого продукты распада пуриновых оснований (гипоксантин и ксантин) превращаются в мочевую кислоту;
  • · синтез креатина и холина.
  • В печени происходит детоксикация различных веществ.
  • Обезвреживающая функция печени

Печень является главным органом, где происходит обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей или в качестве источников энергии. К ним относят лекарственные препараты, продукты хозяйственной деятельности человека, вещества бытовой химии и пищевой промышленности (консерванты, красители).

Обезвреживание нормальных метаболитов

1. Обезвреживание пигментов.

В клетках ретикулоэндотелиальной системы печени протекает катаболизм гема до билирубина, конъюгация билирубина с глюкуроновой кислотой в гепатоцитах и распад в гепатоцитах поступающего из кишечника уробилиногена до непигментных продуктов.

2. Обезвреживание аммиака.

Аммиак – высокотоксичное соединение, особо опасное для мозга. Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины в печени. Мочевина – малотоксичное соединение и легко выводится из организма с мочой.

3. Инактивация гормонов.

Печени принадлежит значительная роль в инактивации гормонов. Многие пептидные гормоны гидролизуются в печени при участии протеолитических ферментов.

Например, фермент инсулиназа гидролизует пептидные цепи А и В инсулина.

Катаболизм адреналина и норадреналина происходит в печени путем дезаминирования моноаминооксидазой, метилирования и конъюгации с серной и глюкуроновой кислотами. Продукты метаболизма выводятся с мочой.

  1. Обезвреживание ксенобиотиков
  2. Обезвреживание большинства ксенобиотиков происходит в 2 фазы:
  3. I – фаза химической модификации;
  4. II – фаза коньюгации.
  5. Химическая модификация – это процесс ферментативной модификации исходной структуры ксенобиотика, в результате которой происходит:
  6. · разрыв внутримолекулярных связей;
  7. · присоединение к молекуле дополнительных функциональных групп (-СН3, -ОН, -NH2),
  8. · удаление функциональных групп путем гидролиза.
  9. Типы модификаций:
  10. · окисление (микросомальное, пероксисомальное);
  11. · восстановление;
  12. · изомеризация;
  13. · ацетилирование, метилирование, гидроксилирование;

· гидролиз и т.д.

Система обезвреживания включает множество разнообразных ферментов (оксидоредуктазы, изомеразы, лиазы, гидролазы), под действием которых практически любой ксенобиотик может быть модифицирован. Наиболее активны ферменты метаболизма ксенобиотиков в печени.

В результате химической модификации, как правило, ксенобиотики становятся более гидрофильными, повышается их растворимость, и они легче выделяются из организма с мочой. Кроме этого, дополнительные функциональные группы необходимы, чтобы вещество вступило в фазу конъюгации.

Коньюгация – процесс образования ковалентных связей между ксенобиотиком и эндогенным субстратом. Образование связей происходит, как правило, по ОН- или NH2-группе ксенобиотика. Образовавшийся коньюгат малотоксичен и легко выводится из организма с мочой.

Выделяют глюкуронидную, сульфатную, тиосульфатную, ацетильную коньюгации. В них принимают участие эндогенные соединения, образующиеся в организме с затратой энергии: УДФ-глюкуронат, ФАФС, тиосульфат, ацетил-КоА.

Катаболизм гемоглобина

Катаболизм гема.

Билирубин образуется при распаде гемоглобина (рис. 28.2). Этот процесс протекает в клетках печени, селезенки и костного мозга. Билирубин является основным желчным пигментом у человека. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека – примерно 250-350 мг. Дальнейший метаболизм билирубина происходит в печени.

Обмен белков в печени. Роль печени в синтезе и разрушении белков

Рис. 28.2. Распад гемоглобина

2. Метаболизм билирубина.

Билирубин, образованный в клетках РЭС селезёнки и костного мозга, называется свободным (неконьюгированным)или непрямым, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови (альбуминах) и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин определяют реакцией с диазореактивом Эрлиха. Свободный (непрямой) билирубин не проходит через почечный барьер и в мочу не попадает.

Каждая молекула альбумина связывает 2 (или 3) молекулы билирубина. При низком содержании альбумина в крови, а также при вытеснении билирубина из центров связывания на поверхности альбумина высокими концентрациями жирных кислот, лекарственных веществ (например, сульфаниламиды) увеличивается количество билирубина, не связанного с альбуминами. Он может проникать в клетки мозга и повреждать их.

Комплекс альбумин-билирубин с током крови попадает в печень, где происходит его превращение в прямой билирубин путем коньюгации с глюкуроновой кислотой.

Реакцию катализирует фермент УДФ-глюкуронилтрансфераза(рис. 28.3). Образующийся билирубиндиглюкуронид получил название прямого(коньюгированного) билирубина или связанного.

Он растворим в воде и дает прямую реакцию с диазореактивом Эрлиха.

Обмен белков в печени. Роль печени в синтезе и разрушении белков

Рис. 28.3. Образование билирубиндиглюкуронида

Прямой билирубин – это нормальный компонент желчи, попадающий в кровь в незначительном количестве. Он может проходить через почечный барьер, но в крови в норме его мало, поэтому в моче обычными лабораторными методами он не определяется.

Вместе с желчью прямой билирубин выводится в тонкий кишечник. В кишечнике билирубинглюкурониды гидролизуются специфическими бактериальными ферментами β-глюкуронидазами.

Освободившийся билирубин под действием кишечной микрофлоры восстанавливается с образованием сначала мезобилирубина, а затем мезобилиногена(уробилиногена).

Небольшая часть уробилиногенов, всасываясь в тонком кишечнике и верхнем отделе толстого, через систему воротной вены попадает в печень, где практически полностью разрушается до дипиррольных соединений. Уробилиноген при этом в общий кровоток не поступает и в моче не определяется.

Основная часть уробилиногена поступает в толстый кишечник, где под влиянием микрофлоры подвергается дальнейшему восстановлению с образованием стеркобилиногена. Образовавшийся стеркобилиноген почти полностью выделяется с калом.

На воздухе он окисляется и превращается встеркобилин, являющийся одним из пигментов кала.

Небольшая часть стеркобилиногена попадает путем всасывания через слизистую толстого кишечника в систему нижней полой вены (через геморроидальные вены), доставляется в почки и выводится с мочой (4 мг/сутки).

Распределение желчных пигментов в норме: кровь – общий билирубин – 8,5 – 20,5 мкмоль/л; непрямой билирубин – 1,7 – 17,1 мкмоль/л; прямой билирубин – 2,2 – 5,1 мкмоль/л; моча – стеркобилиноген – 4 мг/сутки; кал – стеркобилиноген.

Читайте также:  Лечение артрита пальцев рук в домашних условиях народными средствами

Роль печени в обмене аминокислот и белков

ВикиЧтение

Биологическая химия Лелевич Владимир Валерьянович

  • Роль печени в обмене аминокислот и белков
  • Печень играет центральную роль в обмене белков и других азотсодержащих соединений.
  • Она выполняет следующие функции:

1. синтез специфических белков плазмы: — в печени синтезируется: 100 % альбуминов, 75 – 90 % ?-глобулинов, 50 % ?-глобулинов

  1. 2. единственный орган, где синтезируются белки свертывающей системы крови – протромбин, фибриноген, проконвертин, проакцелерин;
  2. 3. активно протекают реакции трансаминирования и дезаминирования аминокислот;
  3. 4. биосинтез мочевины происходит исключительно в печени;
  4. 5. образование мочевой кислоты происходит в основном в печени, так как здесь много фермента ксантиноксидазы, при участии которого продукты распада пуриновых оснований (гипоксантин и ксантин) превращаются в мочевую кислоту;

6. синтез креатина и холина.

В печени происходит детоксикация различных веществ.

Данный текст является ознакомительным фрагментом.

Изменения белков[43]
Те участки генома, которые кодируют белки, изменились на удивление мало. Различия в аминокислотных последовательностях белков у человека и шимпанзе составляют значительно менее 1 %, да и из этих немногочисленных различий большая часть либо не имеет

Нарушения функции печени

Нарушения функции печени
Все животные с нарушением функции печени должны, безусловно, находиться под постоянным наблюдением ветеринара несмотря на то, что традиционная медицина в общем немногое может предложить для лечения этой патологии. Я бы порекомендовал лечить их

Функционирование белков

Функционирование белков
Каждый индивидуальный белок, имеющий уникальную первичную структуру и конформацию, обладает и уникальной функцией, отличающей его от всех остальных белков. Набор индивидуальных белков выполняет в клетке множество разнообразных и сложных

Посттрансляционные изменения белков

Посттрансляционные изменения белков
Многие белки синтезируются в неактивном виде (предшественники) и после схождения с рибосом подвергаются постсинтетическим структурным модификациям. Эти конформационные и структурные изменения полипептидных цепей получили

Глава 23. Обмен аминокислот. Динамическое состояние белков организма

Глава 23. Обмен аминокислот. Динамическое состояние белков организма
Значение аминокислот для организма в первую очередь заключается в том, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и

Всасывание аминокислот

Всасывание аминокислот.
Происходит путем активного транспорта с участием переносчиков. Максимальная концентрация аминокислот в крови достигается через 30–50 мин после приема белковой пищи. Перенос через щеточную каемку осуществляется целым рядом переносчиков, многие

Расщепление белков в тканях

Расщепление белков в тканях
Осуществляется с помощью протеолитических лизосомальных ферментов катепсинов. По строению активного центра выделяют цистеиновые, сериновые, карбоксильные и металлопротеиновые катепсины. Роль катепсинов:1. создание биологически активных

Дезаминирование аминокислот

Дезаминирование аминокислот
Дезаминирование аминокислот – реакция отщепления a-аминогруппы от аминокислоты с выделением аммиака. Различают два типа реакций дезаминирования: прямое и непрямое.Прямое дезаминирование – непосредственное отщепление аминогруппы от

Глава 28. Биохимия печени

Глава 28. Биохимия печени
Печень занимает центральное место в обмене веществ и выполняет многообразные функции:1. Гомеостатическая — регулирует содержание в крови веществ, поступающих в организм с пищей, что обеспечивает постоянство внутренней среды организма.2.

Роль печени в углеводном обмене

Роль печени в углеводном обмене
Основная роль печени в углеводном обмене заключается в поддержании нормального содержания глюкозы в крови – т. е. в регуляции нормогликемии. Это достигается за счет нескольких механизмов.1. Наличие в печени фермента глюкокиназы.

Роль печени в липидном обмене

Роль печени в липидном обмене
Печень участвует во всех этапах липидного обмена, начиная с переваривания липидов и заканчивая специфическими метаболическими превращениями отдельных липидных фракций:1. синтез желчных кислот и образование желчи;2. ?-окисление жирных

Обезвреживающая функция печени

Обезвреживающая функция печени
Печень является главным органом, где про обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей

Болезни печени

Болезни печени
Исследование печени. Роль печени в животном организме велика и разнообразна. Она связана со всеми видами обмена. В печени образуется из приносимых кровью моносахаридов гликоген, который расходуется в виде глюкозы по мере надобности; печень участвует в

Роль печени в обмене белков и аминокислот

Печень играет важную роль в обмене белков. Наибольшее количество белка синтезируется в мышцах, однако в пересчете на 1 г массы в печени их производится больше.

Здесь образуются не только собственные белки гепатоцитов, но и большое количество секретируемых белков, необходимых для нужд организма в целом. Большинство белков плазмы крови синтезируется в печени.

К наиболее важным из них относится альбумин, синтез которого составляет 25% от общего образования белков в печени и 50% — от количества секретируемых белков.

При синтезе альбумина трансляция мРНК происходит на полирибосомах шероховатого эндоплазматического ретикулума. Синтез альбумина регулируется скоростью транскрипции мРНК и доступностью тРНК. При понижении онкотического давления плазмы синтез альбумина увеличивается. Синтез альбумина зависит также от поступления предшественников аминокислот, особенно триптофана.

У больных с крупным карциноидом синтез альбумина может резко понизиться, так как клетки опухоли используют триптофан для синтеза серотонина.

75-90% α-глобулинов и 50% β-глобулинов синтезируются гепатоцитами. γГлобулины продуцируются клетками Купфера.

ЖЕЛЧЕОБРАЗОВАНИЕ. ПИГМЕНТНЫЙ ОБМЕН.

ВИДЫ ЖЕЛТУХ

Желчь образуется клетками печени – гепатоцитами.

Желчеобразование – это: синтез и секреция желчи гепатоцитами; секреция воды эпителиальными клетками желчных протоков; реабсорбция воды по мере продвижения желчи по протокам; экскреция гепатоцитами органических и неорганических компонентов.

В сутки у человека секретируется от 250 до 1000 мл желчи. Желчеобразование происходит непрерывно. После еды выделение желчи рефлекторно усиливается уже через 3-12 мин, причем одним из раздражителей, влияющих на ускорение этого процесса, является сама желчь.

Выработка желчи контролируется нервными и гуморальными механизмами. Повышенное содержание в крови компонентов желчи возбуждает желчеобразование. Значительное влияние на желчеобразование оказывают гормоны. Вазопрессин, АКТГ и инсулин его стимулируют. Гормон эпифиза также стимулирует секрецию желчи, в результат его прямого действия на паренхиму печени.

Желчные кислоты эмульгируют жиры, обеспечивая всасывание в тонком кишечнике жирных кислот, холестерина, витаминов и солей кальция.

Желчь создаёт благоприятные условия для переваривания пищи в тонком кишечнике, улучшает переваривание белков и углеводов, облегчает всасывание продуктов их распада, стимулирует моторику тонкой кишки, предупреждает развитие гнилостных процессов в кишечнике, оказывая противомикробное действие, стимулирует секрецию поджелудочной железой сока и желчеобразовательную функцию самой печени.

В состав желчи входят желчные кислоты, желчные пигменты, холестерол, фосфолипиды, жирные кислоты, натрий, калий, кальций, хлор и его производные, фосфатидилхолин, вода.

В желчи содержатся ферменты, витамины, мочевина и мочевая кислота, аминокислоты и другие ненужные организму соединения.

С желчью выделяются продукты распада, токсические и лекарственные вещества, соединения меди, цинка и ртути.

Вещества, выделяемые с желчью, подразделяются на две группы:

Читайте также:  Анапластическая лимфома. Иммуногистохимия В-крупноклеточной диффузной лимфомы.

— вещества, связанные в плазме крови с белками (например, гормоны). Они не могут преодолеть почечный фильтр и выделяются с желчью;

— вещества, нерастворимые в воде (холестерин, стероидные соединения). В печени они соединяются с глюкуроновой кислотой и переходят в водорастворимое состояние, после чего они выделяются через почки.

Холестерин существует в растворенном состоянии за счет солей желчных кислот и фосфатидилхолина. При недостатке желчных кислот холестерин выпадает в осадок, при этом могут образовываться камни. Интенсивное образование камней отмечается при застое желчи и наличии инфекции.

Желчные пигменты (основной из них билирубин) не принимают участие в пищеварении. Их выделение печенью – чисто экскреторный выделительный процесс.

Процесс желчеобразования самым тесным образом связан с распадом гемоглобина в тканях и образованием желчных пигментов.

Пигментный обмен. Гем является простетической группой гемоглобина и геминовых ферментов; около 80% гема организма находится в гемоглобине. При разрушении эритроцитов освобождается гемоглобин. Его распад происходит в печени, селезенке и костном мозге. Распад гемоглобина в печени начинается с разрыва α-метиновой связи между I и II кольцами порфириноого кольца.

Этот процесс катализируется НАДФ-содержащей оксидазой и приводит к образованию зелёного пигмента вердоглобина. Затем вердоглобин спонтанно распадается, при этом освобождается железо, белок глобин и образуется один из желчных пигментов – биливердин. Образовавшийся биливердин ферментативным путем восстанавливается в печени в билирубин, являющийся основным желчным пигментом.

Основная часть билирубина образуется в клетках ретикулоэдотелиальной системы селезенки и костного мозга. Из этих органов билирубин в соединении с альбуминами транспортируется кровью в печень, где происходит его конъюгация с глюкуроновой кислотой.

Глюкуроновая кислота присоединяется к карбоксильным группам пропионильных остатков, образуя глюкурониды билирубина. Конъюгация с глюкуроновой кислотой существенно изменяет свойства билирубина.

Билирубин нерастворим в воде; именно поэтому он транспортируется кровью в соединении с альбумином. Билирубинглюкуронид растворим в воде, и легко выводится с желчью в кишечник. Билирубин токсичен, особенно для мозга; глюкурониды билирубина не токсичны.

Таким образом, в результате конъюгации билирубина происходит его детоксикация и облегчается выведение из организма.

В кишечнике от билирубинглюкуронидов под действием бактериальных ферментов гидролитически отщепляется глюкуроновая кислота, а вновь образовавшийся билирубин восстанавливается по некоторым двойным связям, образуя две группы продуктов: уробилиногены и стеркобилиногены.

Основная часть этих веществ (95%) выделяется с калом, остальная — всасывается из кишечника в кровь и затем вновь попадает в желчь, а также частично выводится через почки. На воздухе уробилиногены и стеркобилиногены, окисляясь кислородом, превращаются в уробилины и стеркобилины, пигменты, имеющие желтую окраску.

Продукты превращения билирубина называют желчными пигментами. Здоровый взрослый человек ежедневно выделяет 200-300 мг желчных пигментов с калом и 1-2 мг с мочой. Желчные пигменты практически всегда содержатся в желчных камнях, а примерно в ¼ случаев являются их основным компонентом.

Определение концентрации желчных пигментов в крови и моче применяют при дифференциальной диагностике желтух.

Виды желтух. Концентрация билирубина в крови здорового человека равна 1,7- 17 мкмоль/л. В крови содержится как неконъюгированный билирубин (¾), так и глюкурониды. При этом неконъюгированный билирубин, поскольку он нерастворим в воде, находится в соединении с альбумином крови.

Билирубин с диазохлорсульфоновой кислотой образует азосоединение розово-фиолетового цвета; эта реакция используется для определения билирубина в крови и в моче.

Неконъюгированный билирубин, связанный с альбумином, реагирует лишь после добавления спирта, который освобождает его из соединения с альбумином (непрямой билирубин); глюкурониды билирубина определяются и без добавления спирта (прямой билирубин).

При усилении распада эритроцитов, закупорке желчного протока или нарушений функции печени концентрация билирубина в крови увеличивается, в результате кожа, слизистые оболочки, склера глаз окрашиваются в желтый цвет (желтуха). Желтое окрашивание кожи становится заметным, когда концентрация билирубина в крови достигает 2-3 мг/дл. Определение концентрации разных желчных пигментов в крови и в моче позволяет выяснить причину желтухи.

Гемолитическая (надпеченочная) желтуха.При усиленном распаде эритроцитов билирубина образуется больше и скорость его глюкуронирования в печени, а также скорость экскреции в кишечник увеличивается. Однако скорость образования билирубина может превысить способность печени удалять его из крови.

Следовательно, при гемолитической желтухе в основном повышается концентрация непрямого билирубина в крови; кроме того, увеличивается выделение уробилиногенов и стеркобилиногенов с мочой, поскольку печень выделяет в кишечник большие количества глюкуронидов билирубина, из которых образуются уробилиногены и стеркобилиногены.

Желтуха новорожденных. У плода и у новорожденного количество эритроцитов в расчете на единицу массы тела больше, чем у взрослых, больше также и концентрация гемоглобина в эритроцитах.

В течение нескольких недель после рождения количество гемоглобина в крови новорожденных приближается к величине, характерной для взрослых; в этот период относительная скорость распада эритроцитов больше, чем в последующее время.

С другой стороны, способность печени удалять из крови билирубин у плода развита слабо (во внутриутробном периоде билирубин удаляется через плаценту). Однако скорость удаления билирубина из крови увеличивается в 3-4 раза в первые часы или дни после рождения.

В первые дни в крови новорожденных концентрация билирубина увеличена, причем у части новорожденных (примерно у 20%) увеличение значительно. Желтуха новорожденных может быть связана с запаздыванием включения генов, кодирующих фермент глюкуронилтрансферазу.

Другими причинами могут быть низкая способность печени извлекать билирубин из крови и реабсорбция билирубина из кишечника. В тяжелых случаях желтухи новорожденных, когда концентрация билирубина в крови превышает 30 мг/дл, повреждаются функции мозга; в этих условиях для удаления билирубина из организма прибегают к массивному переливанию крови.

Обтурационная (подпеченочная) желтуха. При закупорке желчных протоков (желчный камень, опухоль, рубец) желчь перестает поступать в кишечник, но гепатоциты продолжают ее вырабатывать.

В этих условиях желчные пименты попадают в кровеносное русло, поэтому в крови повышается концентрация в основном прямого билирубина. Прямой билирубин как вещество водорастворимое фильтруется в боуменову капсулу и выводится с мочой.

Поскольку билирубин в кишечник не поступает, уробилиногенов и стеркобилиногенов в моче нет (таблица 4).

Таблица 4

Дифференциальная диагностика желтух

Надпеченочная желтуха Печеночная желтуха Подпеченочная желтуха
Общий билирубин Норма / Увеличен Увеличен Увеличен
Неконьюгированный билирубин Увеличен Норма / Увеличен Норма
Коньюгированный билирубин Норма Увеличен Увеличен
Цвет мочи Норма Темный Темный
Цвет стула Норма Обесцвеченный Обесцвеченный

Печеночно-клеточная (печеночная, паренхиматозная) желтуха.

При гепатитах повреждаются клетки печени и, вследствие этого, снижается продукция желчи; кроме того, в результате повреждения паренхимы печени желчь поступает не только в желчные канальцы, но и в кровь.

При печеночной желтухе в крови увеличивается концентрация непрямого билирубина (нарушено глюкуронирование) и прямого билирубина (желчь поступает в кровь). В моче обнаруживается прямой билирубин.

Наследственные желтухи. Известны наследственные дефекты глюкуронилтрансферазы. При полном отсутствии активности фермента желчные пигменты в желчи не обнаруживаются, а в крови отмечается высокая концентрация неконъюгированного билирубина (до 40 мг/дл).

Ссылка на основную публикацию
Adblock
detector